BOFAS Abstracts Archive

You can search for abstracts by using the search bar below.
Alternatively you can browse through podium and poster presentations by selecting the year and / or type below. You can further refine your search using tags or use the search bar.

 



Categories: Abstracts, 2018, Podium

Do rugby boots with a bladed stud increase contact pressures through the fifth metatarsal compared to a rounded stud? A biomechanical study

D. Winson, O. Lawrence, D. Cazzola, I. Winson

1University Hospital of Wales, Trauma and Orthopaedics, Cardiff, United Kingdom

2Morriston Hospital, Swansea, Swansea, United Kingdom

3University of Bath, Applied Biomechanics Department, Bath, United Kingdom

4Southmead Hospital, North Bristol Trust, Bristol, United Kingdom 

Winner of the BOFAS 2018 Second Prize (Podium)
 

Introduction: Fifth metatarsal fractures in sport are known to be associated with acceleration and cross cutting movements when running. It is also established that playing surface has an impact on the ground reaction forces through the foot, increasing the strain through the fifth metatarsal. But what impact does boot design have on these forces? Current thought is that boots that utilise a blade stud design resist sideways slipping of the planted foot more than boots with a rounded stud. This study aims to compare ground reaction forces through the fifth metatarsal in 2 two different designs of rugby boot to assess what impact stud design might have.

Methods: The forces across the foot were measured using Tekscan in-shoe pressure plates in 24 rugby players. Each player was asked to complete an agility course to measure acceleration, cutting and cross-cutting in the two different designs of rugby boot, reproducing true playing conditions. The boots used were the Canterbury Phoenix Club 8 Stud boot and the Canterbury Speed Club Blade boot. The trial was conducted on an 4G artificial pitch at the Cardiff Arms Park rugby ground. Ethical approval was obtained from Bath University and a research grant was provided by British Orthopaedic Foot and Ankle Society.

Results: The blade boot had significantly higher contact pressures than the stud boot on the fifth metatarsal in the combined movements (17.909 ± 10.442 N/cm2 Blade Vs 16.888 ± 9.992 N/cm2 Boot; P < .0125; n= 864 steps in each boot group). The blade boot also produced higher pressure during cross-cutting (32.331 ± 13.568 N/cm2 Vs 27.651 ± 15.194 N/cm2 p < 0.007). Pressures were also higher in both acceleration and cutting, although not significantly so.

Conclusions: These results will guide clinicians advising athletes in shoe design, especially those predisposed to or rehabilitating from a fifth metatarsal fracture.

Previous Article Differential gene expression in ankle cartilage chondrocytes compared to knee: might this explain the difference in prevalence of osteoarthritis in these joints and identify a potential treatment targ
Next Article Do stable Weber B ankle fractures pose an unnecessary load on fracture clinics? A prospective review of 100 patients
Print


Click thumbnail below to view poster / thumbnail:

Archive of Abstracts

2024   -   Prize Winners  |  All Abstracts
2023   -   Prize Winners  |  All Abstracts
2022   -   Prize Winners  |  All Abstracts
2021   -   Prize Winners  
2019   -   Podium  |  Poster
2018   -   Podium  |  Poster
2017   -   Podium  |  Poster
2016   -   Podium  |  Poster
2015   -   Podium  |  Poster
2014   -   Podium  |  Poster
2013   -   Podium  |  Poster
2011   -   All Abstracts
2009   -   All Abstracts
2008   -   All Abstracts
2007   -   All Abstracts
2006   -   All Abstracts
2005   -   All Abstracts
2004   -   All Abstracts
2002   -   All Abstracts
2001   -   All Abstracts
2000   -   All Abstracts
1999   -   All Abstracts
1998   -   All Abstracts
1997   -   All Abstracts
1996   -   All Abstracts
1995   -   All Abstracts
1994   -   All Abstracts
1993   -   All Abstracts
1991   -   All Abstracts
1990   -   All Abstracts
1989   -   All Abstracts
1987   -   All Abstracts
1985   -   All Abstracts
1983   -   All Abstracts