BOFAS News & Events

This pages lists all the latest news and upcoming events.

 

To access 'Foot Print' (the BOFAS Bulletin) please click here (members only)

 

Latest News

12345678

 

BOFAS Hosted Events

BOFAS Principles Course - Dubai

The aim is to give Overseas Trainee Orthopaedic Surgeons a solid grounding in the principles and the decision making in Foot & Ankle Surgery.

There is an emphasis on clinical examination of cases, small group discussions and learning surgical approaches in the cadaver lab.

This is the first course BOFAS is running in UAE and the aim is to expand the Foot and Ankle education and training in the Middle East and Gulf area.

Venue - Le Meridien, Dubai, United Arab Emirates

Documents to download

BOFAS Principles Course Taunton

These courses are aimed at Higher Surgical Trainees / ST3 onwards and are designed to teach the core of Foot and Ankle surgery in an informal and interactive environment. The emphasis is on clinical examination cases, discussion groups and typical day-to-day clinic scenarios. Although not an exam preparation course, content is taught to the standard expected in the FRCS(Tr & Orth) exam; that of a day-one non-specialist orthopaedic consultant. Applications will open on 1st September 2023.

Venue - Taunton (TBC)

 

 

Documents to download


 

BOFAS Affiliated Courses

Other External Events / Courses

Togay Koç
/ Categories: Abstracts, 2016, Podium

The use of weight-bearing CT scan in the evaluation of hindfoot alignment

M. Myerson, T. Tracey, J. Kaplan, S. Li

Background: There have been multiple techniques described to determine hindfoot alignment radiographically. The 2-dimensional nature of radiographs fails to take into account the contribution of the remainder of the foot to overall alignment. A new radiographic technique has been published in which the hindfoot alignment is calculated using the Ground Reaction Force Calcanea Offset. This technique accounts for the individual forefoot contribution to alignment, but is still limited by it´s 2-dimensional nature. The purpose of this study was to compare the hindfoot moment arm (HMA) described by Saltzman and the hindfoot alignment angle (HAA) described by Williamson, with a technique determining the ground reaction force calcaneal offset (GRF-CT) using 3-dimensional weight bearing CT Scans.

Methods: The HMA, HAA, and GRF-CT 3-D weight bearing CT scans were measured by three different investigators. Each of these measurements were calculated twice on separate occasions by each investigator to determine the intra- and inter-observer reliability.

Results: 104 patients underwent weight bearing hindfoot alignment radiographs and 3-dimensional weight bearing CT scans including 33 patients with varus and 71 patients with valgus hindfoot deformities. There was excellent intra- and inter-observer reliability with all three measurement techniques (P< 0.01), however the GRF-CT showed the best intra- and inter-observer reliability with the lowest standard deviation (P< 001).

Conclusions: The GRF-CT technique is more reliable than traditional radiographic techniques for measuring the hindfoot alignment. While the intra- and inter-observer reliability is good for all three techniques, the GRF-CT technique resulted in the best intra- and inter-observer reliability with the lowest standard deviation. This technique provides the most accurate hindfoot alignment as it takes into account the effect of forefoot on overall alignment, preventing inaccuracies of projection and foot orientation in contrast to traditional radiographic techniques, which may be valuable in surgical decision making.

Print
590